Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961340

RESUMO

Axon guidance molecules were found to be the gene family most frequently altered in pancreatic ductal adenocarcinoma (PDA) through mutations and copy number changes. However, the exact molecular mechanism regarding PDA development remained unclear. Using genetically engineered mouse models to examine one of the axon guidance molecules, semaphorin 3D (SEMA3D), we found a dual role for tumor-derived SEMA3D in malignant transformation of pancreatic epithelial cells and a role for nerve-derived SEMA3D in PDA development. This was demonstrated by the pancreatic-specific knockout of the SEMA3D gene from the KRAS G12D and TP53 R 172 H mutation knock-in, PDX1-Cre (KPC) mouse model which demonstrated a delayed tumor initiation and growth comparing to the original KPC mouse model. Our results showed that SEMA3D knockout skews the macrophages in the pancreas away from M2 polarization, providing a potential mechanistic role of tumor-derived SEMA3D in PDA development. The KPC mice with the SEMA3D knockout remained metastasis-free, however, died from primary tumor growth. We then tested the hypothesis that a potential compensation mechanism could result from SEMA3D which is naturally expressed by the intratumoral nerves. Our study further revealed that nerve-derived SEMA3D does not reprogram macrophages directly, but reprograms macrophages indirectly through ARF6 signaling and lactate production in PDA tumor cells. SEMA3D increases tumor-secreted lactate which is sensed by GPCR132 on macrophages and subsequently stimulates pro-tumorigenic M2 polarization in vivo. Tumor intrinsic- and extrinsic-SEMA3D induced ARF6 signaling through its receptor Plexin D1 in a mutant KRAS-dependent manner. Consistently, RNA sequencing database analysis revealed an association of higher KRAS MUT expression with an increase in SEMA3D and ARF6 expression in human PDAs. Moreover, multiplex immunohistochemistry analysis showed an increased number of M2-polarized macrophages proximal to nerves in human PDA tissue expressing SEMA3D. Thus, this study suggests altered expression of SEMA3D in tumor cells lead to acquisition of cancer-promoting functions and the axon guidance signaling originating from nerves is "hijacked" by tumor cells to support their growth. Other axon guidance and neuronal development molecules may play a similar dual role which is worth further investigation. One sentence summary: Tumor- and nerve-derived SEMA3D promotes tumor progression and metastasis through macrophage reprogramming in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: This study established the dual role of axon guidance molecule, SEMA3D, in the malignant transformation of pancreatic epithelial cells and of nerve-derived SEMA3D in PDA progression and metastasis. It revealed macrophage reprogramming as the mechanism underlying bothroles. Together, this research elucidated how inflammatory responses promote invasive PDA progression and metastasis through an oncogenic process.

2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638991

RESUMO

Selenoproteins play important roles in many cellular functions and biochemical pathways in mammals. Our previous study showed that the deficiency of the 15 kDa selenoprotein (Selenof) significantly reduced the formation of aberrant crypt foci (ACF) in a mouse model of azoxymethane (AOM)-induced colon carcinogenesis. The objective of this study was to examine the effects of Selenof on inflammatory tumorigenesis, and whether dietary selenium modified these effects. For 20 weeks post-weaning, Selenof-knockout (KO) mice and littermate controls were fed diets that were either deficient, adequate or high in sodium selenite. Colon tumors were induced with AOM and dextran sulfate sodium. Surprisingly, KO mice had drastically fewer ACF but developed a similar number of tumors as their littermate controls. Expression of genes important in inflammatory colorectal cancer and those relevant to epithelial barrier function was assessed, in addition to structural differences via tissue histology. Our findings point to Selenof's potential role in intestinal barrier integrity and structural changes in glandular and mucin-producing goblet cells in the mucosa and submucosa, which may determine the type of tumor developing.


Assuntos
Focos de Criptas Aberrantes/dietoterapia , Focos de Criptas Aberrantes/metabolismo , Carcinogênese/efeitos dos fármacos , Neoplasias do Colo/sangue , Neoplasias do Colo/dietoterapia , Mucosa Intestinal/metabolismo , Selenoproteínas/metabolismo , Selenito de Sódio/administração & dosagem , Oligoelementos/administração & dosagem , Focos de Criptas Aberrantes/genética , Animais , Azoximetano/efeitos adversos , Carcinogênese/genética , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Citocinas/sangue , Sulfato de Dextrana/efeitos adversos , Dieta/métodos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Selenoproteínas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...